DEMO_febio_0076_actuator_donnan_equilibrium_swelling_01
Below is a demonstration for:
- Building geometry for a cube with hexahedral elements
- Defining the boundary conditions
- Coding the febio structure
- Running the model
- Importing and visualizing the displacement and stress results
Contents
Keywords
- febio_spec version 3.0
- febio, FEBio
- donnan equilibrium swelling
- hexahedral elements, hex8
- cube, box, rectangular
- static, solid
- displacement logfile
- stress logfile
clear; close all; clc;
Plot settings
fontSize=20;
faceAlpha1=0.8;
markerSize=40;
markerSize2=25;
lineWidth=3;
cMap=spectral(250); %colormap
Control parameters
% Path names defaultFolder = fileparts(fileparts(mfilename('fullpath'))); savePath=fullfile(defaultFolder,'data','temp'); % Defining file names febioFebFileNamePart='tempModel'; febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name febioLogFileName=[febioFebFileNamePart,'.txt']; %FEBio log file name febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement febioLogFileName_vol=[febioFebFileNamePart,'_vol_out.txt']; %Log file name for exporting stress febioLogFileName_stress_prin=[febioFebFileNamePart,'_stress_prin_out.txt']; %Log file name for exporting principal stress %Specifying dimensions and number of elements sampleWidth=0.5; %Width sampleThickness=1.5; %Thickness sampleHeight=7; %Height pointSpacings=0.25*ones(1,3); %Desired point spacing between nodes numElementsWidth=round(sampleWidth/pointSpacings(1)); %Number of elemens in dir 1 numElementsThickness=round(sampleThickness/pointSpacings(2)); %Number of elemens in dir 2 numElementsHeight=round(sampleHeight/pointSpacings(3)); %Number of elemens in dir 3 %Material parameter set E_youngs=1; v_pois=0.3; anisotropicOption=0; if anisotropicOption==1 ksi=[500 500 0.01]; beta=[3 3 3]; end bosm_ini=300; bosm_diff_amp=200; cF0=bosm_ini; % FEA control settings numTimeSteps=50; %Number of time steps desired max_refs=25; %Max reforms max_ups=0; %Set to zero to use full-Newton iterations opt_iter=25; %Optimum number of iterations max_retries=5; %Maximum number of retires dtmin=(1/numTimeSteps)/100; %Minimum time step size dtmax=1/numTimeSteps; %Maximum time step size runMode='external';
Creating model geometry and mesh
A box is created with tri-linear hexahedral (hex8) elements using the hexMeshBox function. The function offers the boundary faces with seperate labels for the top, bottom, left, right, front, and back sides. As such these can be used to define boundary conditions on the exterior.
% Create a box with hexahedral elements cubeDimensions=[sampleWidth sampleThickness sampleHeight]; %Dimensions cubeElementNumbers=[numElementsWidth numElementsThickness numElementsHeight]; %Number of elements outputStructType=2; %A structure compatible with mesh view [meshStruct]=hexMeshBox(cubeDimensions,cubeElementNumbers,outputStructType); %Access elements, nodes, and faces from the structure E=meshStruct.elements; %The elements V=meshStruct.nodes; %The nodes (vertices) Fb=meshStruct.facesBoundary; %The boundary faces Cb=meshStruct.boundaryMarker; %The "colors" or labels for the boundary faces elementMaterialIndices=ones(size(E,1),1); %Element material indices
VE=patchCentre(E,V); logicSide=VE(:,1)<0; E1=E(logicSide,:); %First set E2=E(~logicSide,:); %Second set E=[E1;E2]; %Reorder full set
Plotting model boundary surfaces and a cut view
hFig=cFigure; subplot(1,2,1); hold on; title('Model boundary surfaces and labels','FontSize',fontSize); gpatch(Fb,V,Cb,'k',faceAlpha1); colormap(gjet(6)); icolorbar; axisGeom(gca,fontSize); hs=subplot(1,2,2); hold on; title('Cut view of solid mesh','FontSize',fontSize); optionStruct.hFig=[hFig hs]; meshView(meshStruct,optionStruct); axisGeom(gca,fontSize); drawnow;

Defining the boundary conditions
The visualization of the model boundary shows colors for each side of the cube. These labels can be used to define boundary conditions.
%Prescribed displacement nodes bcSupportList=unique(Fb(Cb==5,:)); %Node set for selected face
Visualizing boundary conditions. Markers plotted on the semi-transparent model denote the nodes in the various boundary condition lists.
hf=cFigure; title('Boundary conditions','FontSize',fontSize); xlabel('X','FontSize',fontSize); ylabel('Y','FontSize',fontSize); zlabel('Z','FontSize',fontSize); hold on; gpatch(Fb,V,'kw','k',0.5); hl(1)=plotV(V(bcSupportList,:),'k.','MarkerSize',markerSize); legend(hl,{'BC support'}); axisGeom(gca,fontSize); camlight headlight; drawnow;

Defining the FEBio input structure
See also febioStructTemplate and febioStruct2xml and the FEBio user manual.
%Get a template with default settings [febio_spec]=febioStructTemplate; %Set globals/constants febio_spec.Globals.Constants.R=8.314e-6; febio_spec.Globals.Constants.T=310; %febio_spec version febio_spec.ATTR.version='3.0'; %Module section febio_spec.Module.ATTR.type='biphasic'; %Control section febio_spec.Control.analysis='STATIC'; febio_spec.Control.time_steps=numTimeSteps; febio_spec.Control.step_size=1/numTimeSteps; febio_spec.Control.solver.max_refs=max_refs; febio_spec.Control.solver.max_ups=max_ups; febio_spec.Control.time_stepper.dtmin=dtmin; febio_spec.Control.time_stepper.max_retries=max_retries; febio_spec.Control.time_stepper.opt_iter=opt_iter; %Use must-points by specifying febio_spec.Control.time_stepper=rmfield(febio_spec.Control.time_stepper,'dtmax'); %Remove existing template dtmax definition febio_spec.Control.time_stepper.dtmax.ATTR.lc=1; %Set load curve id for dtmax febio_spec.Control.time_stepper.dtmax.VAL=1; %Set value %Material section materialName1='Material1'; febio_spec.Material.material{1}.ATTR.name=materialName1; febio_spec.Material.material{1}.ATTR.type='solid mixture'; febio_spec.Material.material{1}.ATTR.id=1; febio_spec.Material.material{1}.mat_axis.ATTR.type='vector'; febio_spec.Material.material{1}.mat_axis.a=[1 0 0]; febio_spec.Material.material{1}.mat_axis.d=[0 1 0]; febio_spec.Material.material{1}.solid{1}.ATTR.type='Donnan equilibrium'; febio_spec.Material.material{1}.solid{1}.phiw0=0.8; febio_spec.Material.material{1}.solid{1}.cF0.ATTR.lc=2; febio_spec.Material.material{1}.solid{1}.cF0.VAL=1; febio_spec.Material.material{1}.solid{1}.bosm.ATTR.lc=3; febio_spec.Material.material{1}.solid{1}.bosm.VAL=1; febio_spec.Material.material{1}.solid{2}.ATTR.type='neo-Hookean'; febio_spec.Material.material{1}.solid{2}.E=1; febio_spec.Material.material{1}.solid{2}.v=0.3; if anisotropicOption==1 febio_spec.Material.material{1}.solid{3}.ATTR.type='ellipsoidal fiber distribution'; febio_spec.Material.material{1}.solid{3}.ksi=ksi; febio_spec.Material.material{1}.solid{3}.beta=beta; end materialName2='Material2'; febio_spec.Material.material{2}.ATTR.name=materialName2; febio_spec.Material.material{2}.ATTR.type='solid mixture'; febio_spec.Material.material{2}.ATTR.id=2; febio_spec.Material.material{1}.mat_axis.ATTR.type='vector'; febio_spec.Material.material{1}.mat_axis.a=[1 0 0]; febio_spec.Material.material{1}.mat_axis.d=[0 1 0]; febio_spec.Material.material{2}.solid{1}.ATTR.type='Donnan equilibrium'; febio_spec.Material.material{2}.solid{1}.phiw0=0.8; febio_spec.Material.material{2}.solid{1}.cF0.ATTR.lc=2; febio_spec.Material.material{2}.solid{1}.cF0.VAL=1; febio_spec.Material.material{2}.solid{1}.bosm.ATTR.lc=4; febio_spec.Material.material{2}.solid{1}.bosm.VAL=1; febio_spec.Material.material{2}.solid{2}.ATTR.type='neo-Hookean'; febio_spec.Material.material{2}.solid{2}.E=E_youngs; febio_spec.Material.material{2}.solid{2}.v=v_pois; if anisotropicOption==1 febio_spec.Material.material{2}.solid{3}.ATTR.type='ellipsoidal fiber distribution'; febio_spec.Material.material{2}.solid{3}.ksi=ksi; febio_spec.Material.material{2}.solid{3}.beta=beta; end % Mesh section % -> Nodes febio_spec.Mesh.Nodes{1}.ATTR.name='Object1'; %The node set name febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates % -> Elements partName1='Part1'; febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part febio_spec.Mesh.Elements{1}.ATTR.type='hex8'; %Element type febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E1,1))'; %Element id's febio_spec.Mesh.Elements{1}.elem.VAL=E1; %The element matrix partName2='Part2'; febio_spec.Mesh.Elements{2}.ATTR.name=partName2; %Name of this part febio_spec.Mesh.Elements{2}.ATTR.type='hex8'; %Element type febio_spec.Mesh.Elements{2}.elem.ATTR.id=size(E1,1)+(1:1:size(E2,1))'; %Element id's febio_spec.Mesh.Elements{2}.elem.VAL=E2; %The element matrix % -> NodeSets nodeSetName1='bcSupportList'; febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1; febio_spec.Mesh.NodeSet{1}.node.ATTR.id=bcSupportList(:); %MeshDomains section febio_spec.MeshDomains.SolidDomain{1}.ATTR.name=partName1; febio_spec.MeshDomains.SolidDomain{1}.ATTR.mat=materialName1; febio_spec.MeshDomains.SolidDomain{2}.ATTR.name=partName2; febio_spec.MeshDomains.SolidDomain{2}.ATTR.mat=materialName2; %Boundary condition section % -> Fix boundary conditions febio_spec.Boundary.bc{1}.ATTR.type='fix'; febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1; febio_spec.Boundary.bc{1}.dofs='x,y,z'; %LoadData section % -> load_controller febio_spec.LoadData.load_controller{1}.ATTR.id=1; febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{1}.interpolate='STEP'; febio_spec.LoadData.load_controller{1}.points.point.VAL=[0 dtmax; 0.2 dtmax; 0.4 dtmax; 0.6 dtmax; 0.8 dtmax; 1 dtmax]; febio_spec.LoadData.load_controller{2}.ATTR.id=2; febio_spec.LoadData.load_controller{2}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{2}.interpolate='LINEAR'; febio_spec.LoadData.load_controller{2}.points.point.VAL=[0 0; 0.2 cF0; 1 cF0]; febio_spec.LoadData.load_controller{3}.ATTR.id=3; febio_spec.LoadData.load_controller{3}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{3}.interpolate='LINEAR'; febio_spec.LoadData.load_controller{3}.points.point.VAL=[0 bosm_ini; 0.2 bosm_ini; 0.4 bosm_ini+bosm_diff_amp; 0.6 bosm_ini; 0.8 bosm_ini-bosm_diff_amp; 1 bosm_ini]; febio_spec.LoadData.load_controller{4}.ATTR.id=4; febio_spec.LoadData.load_controller{4}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{4}.interpolate='LINEAR'; febio_spec.LoadData.load_controller{4}.points.point.VAL=[0 bosm_ini; 0.2 bosm_ini; 0.4 bosm_ini-bosm_diff_amp; 0.6 bosm_ini; 0.8 bosm_ini+bosm_diff_amp; 1 bosm_ini]; %Output section % -> log file febio_spec.Output.logfile.ATTR.file=febioLogFileName; febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp; febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz'; febio_spec.Output.logfile.node_data{1}.ATTR.delim=','; febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_vol; febio_spec.Output.logfile.element_data{1}.ATTR.data='J'; febio_spec.Output.logfile.element_data{1}.ATTR.delim=','; febio_spec.Output.logfile.element_data{2}.ATTR.file=febioLogFileName_stress_prin; febio_spec.Output.logfile.element_data{2}.ATTR.data='s1;s2;s3'; febio_spec.Output.logfile.element_data{2}.ATTR.delim=',';
Quick viewing of the FEBio input file structure
The febView function can be used to view the xml structure in a MATLAB figure window.
febView(febio_spec); %Viewing the febio file
Exporting the FEBio input file
Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.
febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode %system(['gedit ',febioFebFileName,' &']);
Running the FEBio analysis
To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.
febioAnalysis.run_filename=febioFebFileName; %The input file name febioAnalysis.run_logname=febioLogFileName; %The name for the log file febioAnalysis.disp_on=1; %Display information on the command window febioAnalysis.runMode=runMode; febioAnalysis.maxLogCheckTime=10; %Max log file checking time [runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --------> RUNNING/MONITORING FEBIO JOB <-------- 23-Feb-2022 13:22:03 FEBio path: /home/kevin/FEBioStudio/bin/febio3 # Attempt removal of existing log files 23-Feb-2022 13:22:03 * Removal succesful 23-Feb-2022 13:22:03 # Attempt removal of existing .xplt files 23-Feb-2022 13:22:03 * Removal succesful 23-Feb-2022 13:22:03 # Starting FEBio... 23-Feb-2022 13:22:03 Max. total analysis time is: Inf s * Waiting for log file creation 23-Feb-2022 13:22:03 Max. wait time: 10 s * Log file found. 23-Feb-2022 13:22:04 # Parsing log file... 23-Feb-2022 13:22:04 number of iterations : 2 23-Feb-2022 13:22:04 number of reformations : 2 23-Feb-2022 13:22:04 ------- converged at time : 0.02 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:04 number of reformations : 3 23-Feb-2022 13:22:04 ------- converged at time : 0.04 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:04 number of reformations : 3 23-Feb-2022 13:22:04 ------- converged at time : 0.06 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:04 number of reformations : 3 23-Feb-2022 13:22:04 ------- converged at time : 0.08 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:04 number of reformations : 3 23-Feb-2022 13:22:04 ------- converged at time : 0.1 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:04 number of reformations : 3 23-Feb-2022 13:22:04 ------- converged at time : 0.12 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:04 number of reformations : 3 23-Feb-2022 13:22:04 ------- converged at time : 0.14 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:04 number of reformations : 3 23-Feb-2022 13:22:04 ------- converged at time : 0.16 23-Feb-2022 13:22:04 number of iterations : 3 23-Feb-2022 13:22:05 number of reformations : 3 23-Feb-2022 13:22:05 ------- converged at time : 0.18 23-Feb-2022 13:22:05 number of iterations : 3 23-Feb-2022 13:22:05 number of reformations : 3 23-Feb-2022 13:22:05 ------- converged at time : 0.2 23-Feb-2022 13:22:05 number of iterations : 7 23-Feb-2022 13:22:05 number of reformations : 7 23-Feb-2022 13:22:05 ------- converged at time : 0.216667 23-Feb-2022 13:22:05 number of iterations : 10 23-Feb-2022 13:22:05 number of reformations : 10 23-Feb-2022 13:22:05 ------- converged at time : 0.234 23-Feb-2022 13:22:05 number of iterations : 9 23-Feb-2022 13:22:05 number of reformations : 9 23-Feb-2022 13:22:05 ------- converged at time : 0.251867 23-Feb-2022 13:22:05 number of iterations : 9 23-Feb-2022 13:22:05 number of reformations : 9 23-Feb-2022 13:22:05 ------- converged at time : 0.27016 23-Feb-2022 13:22:05 number of iterations : 9 23-Feb-2022 13:22:05 number of reformations : 9 23-Feb-2022 13:22:05 ------- converged at time : 0.288795 23-Feb-2022 13:22:05 number of iterations : 10 23-Feb-2022 13:22:06 number of reformations : 10 23-Feb-2022 13:22:06 ------- converged at time : 0.307702 23-Feb-2022 13:22:06 number of iterations : 10 23-Feb-2022 13:22:06 number of reformations : 10 23-Feb-2022 13:22:06 ------- converged at time : 0.326829 23-Feb-2022 13:22:06 number of iterations : 10 23-Feb-2022 13:22:06 number of reformations : 10 23-Feb-2022 13:22:06 ------- converged at time : 0.34613 23-Feb-2022 13:22:06 number of iterations : 10 23-Feb-2022 13:22:06 number of reformations : 10 23-Feb-2022 13:22:06 ------- converged at time : 0.36557 23-Feb-2022 13:22:06 number of iterations : 10 23-Feb-2022 13:22:06 number of reformations : 10 23-Feb-2022 13:22:06 ------- converged at time : 0.385123 23-Feb-2022 13:22:06 number of iterations : 10 23-Feb-2022 13:22:07 number of reformations : 10 23-Feb-2022 13:22:07 ------- converged at time : 0.4 23-Feb-2022 13:22:07 number of iterations : 10 23-Feb-2022 13:22:07 number of reformations : 10 23-Feb-2022 13:22:07 ------- converged at time : 0.419714 23-Feb-2022 13:22:07 number of iterations : 10 23-Feb-2022 13:22:07 number of reformations : 10 23-Feb-2022 13:22:07 ------- converged at time : 0.439485 23-Feb-2022 13:22:07 number of iterations : 10 23-Feb-2022 13:22:07 number of reformations : 10 23-Feb-2022 13:22:07 ------- converged at time : 0.459301 23-Feb-2022 13:22:07 number of iterations : 9 23-Feb-2022 13:22:07 number of reformations : 9 23-Feb-2022 13:22:07 ------- converged at time : 0.479155 23-Feb-2022 13:22:07 number of iterations : 9 23-Feb-2022 13:22:07 number of reformations : 9 23-Feb-2022 13:22:07 ------- converged at time : 0.499037 23-Feb-2022 13:22:07 number of iterations : 9 23-Feb-2022 13:22:08 number of reformations : 9 23-Feb-2022 13:22:08 ------- converged at time : 0.518944 23-Feb-2022 13:22:08 number of iterations : 8 23-Feb-2022 13:22:08 number of reformations : 8 23-Feb-2022 13:22:08 ------- converged at time : 0.538869 23-Feb-2022 13:22:08 number of iterations : 7 23-Feb-2022 13:22:08 number of reformations : 7 23-Feb-2022 13:22:08 ------- converged at time : 0.558809 23-Feb-2022 13:22:08 number of iterations : 8 23-Feb-2022 13:22:08 number of reformations : 8 23-Feb-2022 13:22:08 ------- converged at time : 0.57876 23-Feb-2022 13:22:08 number of iterations : 7 23-Feb-2022 13:22:08 number of reformations : 7 23-Feb-2022 13:22:08 ------- converged at time : 0.598722 23-Feb-2022 13:22:08 number of iterations : 3 23-Feb-2022 13:22:08 number of reformations : 3 23-Feb-2022 13:22:08 ------- converged at time : 0.6 23-Feb-2022 13:22:08 number of iterations : 25 23-Feb-2022 13:22:09 number of reformations : 25 23-Feb-2022 13:22:09 ------- converged at time : 0.619975 23-Feb-2022 13:22:09 number of iterations : 11 23-Feb-2022 13:22:09 number of reformations : 11 23-Feb-2022 13:22:09 ------- converged at time : 0.639951 23-Feb-2022 13:22:09 number of iterations : 10 23-Feb-2022 13:22:09 number of reformations : 10 23-Feb-2022 13:22:09 ------- converged at time : 0.659931 23-Feb-2022 13:22:09 number of iterations : 9 23-Feb-2022 13:22:09 number of reformations : 9 23-Feb-2022 13:22:09 ------- converged at time : 0.679915 23-Feb-2022 13:22:09 number of iterations : 10 23-Feb-2022 13:22:09 number of reformations : 10 23-Feb-2022 13:22:09 ------- converged at time : 0.699903 23-Feb-2022 13:22:09 number of iterations : 11 23-Feb-2022 13:22:10 number of reformations : 11 23-Feb-2022 13:22:10 ------- converged at time : 0.719893 23-Feb-2022 13:22:10 number of iterations : 10 23-Feb-2022 13:22:10 number of reformations : 10 23-Feb-2022 13:22:10 ------- converged at time : 0.739885 23-Feb-2022 13:22:10 number of iterations : 10 23-Feb-2022 13:22:10 number of reformations : 10 23-Feb-2022 13:22:10 ------- converged at time : 0.759878 23-Feb-2022 13:22:10 number of iterations : 10 23-Feb-2022 13:22:10 number of reformations : 10 23-Feb-2022 13:22:10 ------- converged at time : 0.779873 23-Feb-2022 13:22:10 number of iterations : 11 23-Feb-2022 13:22:10 number of reformations : 11 23-Feb-2022 13:22:10 ------- converged at time : 0.799869 23-Feb-2022 13:22:10 number of iterations : 3 23-Feb-2022 13:22:10 number of reformations : 3 23-Feb-2022 13:22:10 ------- converged at time : 0.8 23-Feb-2022 13:22:10 number of iterations : 11 23-Feb-2022 13:22:10 number of reformations : 11 23-Feb-2022 13:22:10 ------- converged at time : 0.819997 23-Feb-2022 13:22:10 number of iterations : 10 23-Feb-2022 13:22:11 number of reformations : 10 23-Feb-2022 13:22:11 ------- converged at time : 0.839995 23-Feb-2022 13:22:11 number of iterations : 10 23-Feb-2022 13:22:11 number of reformations : 10 23-Feb-2022 13:22:11 ------- converged at time : 0.859994 23-Feb-2022 13:22:11 number of iterations : 9 23-Feb-2022 13:22:11 number of reformations : 9 23-Feb-2022 13:22:11 ------- converged at time : 23-Feb-2022 13:22:11 number of iterations : 9 23-Feb-2022 13:22:11 number of reformations : 9 23-Feb-2022 13:22:11 ------- converged at time : 0.899991 23-Feb-2022 13:22:11 number of iterations : 9 23-Feb-2022 13:22:11 number of reformations : 9 23-Feb-2022 13:22:11 ------- converged at time : 0.91999 23-Feb-2022 13:22:11 number of iterations : 8 23-Feb-2022 13:22:11 number of reformations : 8 23-Feb-2022 13:22:11 ------- converged at time : 0.93999 23-Feb-2022 13:22:11 number of iterations : 7 23-Feb-2022 13:22:12 number of reformations : 7 23-Feb-2022 13:22:12 ------- converged at time : 0.959989 23-Feb-2022 13:22:12 number of iterations : 8 23-Feb-2022 13:22:12 number of reformations : 8 23-Feb-2022 13:22:12 ------- converged at time : 0.979989 23-Feb-2022 13:22:12 number of iterations : 7 23-Feb-2022 13:22:12 number of reformations : 7 23-Feb-2022 13:22:12 ------- converged at time : 0.999988 23-Feb-2022 13:22:12 number of iterations : 2 23-Feb-2022 13:22:12 number of reformations : 2 23-Feb-2022 13:22:12 ------- converged at time : 1 23-Feb-2022 13:22:12 Elapsed time : 0:00:09 23-Feb-2022 13:22:12 N O R M A L T E R M I N A T I O N # Done 23-Feb-2022 13:22:12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Import FEBio results
if runFlag==1 %i.e. a succesful run
% Importing nodal displacements from a log file dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),1,1); %Access data N_disp_mat=dataStruct.data; %Displacement timeVec=dataStruct.time; %Time %Create deformed coordinate set V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);
Plotting the simulated results using anim8 to visualize and animate deformations
DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude % Create basic view and store graphics handle to initiate animation hf=cFigure; %Open figure gtitle([febioFebFileNamePart,': Press play to animate']); title('Displacement magnitude [mm]','Interpreter','Latex') hp=gpatch(Fb,V_DEF(:,:,end),DN_magnitude,'k',1,2); %Add graphics object to animate hp.Marker='.'; hp.MarkerSize=markerSize2; hp.FaceColor='interp'; gpatch(Fb,V,0.5*ones(1,3),'none',0.25); %A static graphics object axisGeom(gca,fontSize); colormap(cMap); colorbar; caxis([0 max(max(sqrt(sum(N_disp_mat(:,:,:).^2,2))))]); caxis manual; axis(axisLim(V_DEF)); %Set axis limits statically view(140,30); camlight headlight; % Set up animation features animStruct.Time=timeVec; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments DN_magnitude=sqrt(sum(N_disp_mat(:,:,qt).^2,2)); %Current displacement magnitude %Set entries in animation structure animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate animStruct.Set{qt}={V_DEF(:,:,qt),DN_magnitude}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;

Importing element stress from a log file
dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_vol),1,1);
%Access data
E_J_mat=dataStruct.data;
E_J_mat(:,:,1)=1;
Plotting the simulated results using anim8 to visualize and animate deformations
[CV]=faceToVertexMeasure(E,V,E_J_mat(:,:,end)); % Create basic view and store graphics handle to initiate animation hf=cFigure; %Open figure /usr/local/MATLAB/R2020a/bin/glnxa64/jcef_helper: symbol lookup error: /lib/x86_64-linux-gnu/libpango-1.0.so.0: undefined symbol: g_ptr_array_copy gtitle([febioFebFileNamePart,': Press play to animate']); title('$J$ [.]','Interpreter','Latex') hp=gpatch(Fb,V_DEF(:,:,end),CV,'k',1,2); %Add graphics object to animate hp.Marker='.'; hp.MarkerSize=markerSize2; hp.FaceColor='interp'; gpatch(Fb,V,0.5*ones(1,3),'none',0.25); %A static graphics object axisGeom(gca,fontSize); colormap(cMap); colorbar; caxis([min(E_J_mat(:)) max(E_J_mat(:))]); axis(axisLim(V_DEF)); %Set axis limits statically view(140,30); camlight headlight; % Set up animation features animStruct.Time=timeVec; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments [CV]=faceToVertexMeasure(E,V,E_J_mat(:,:,qt)); %Set entries in animation structure animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate animStruct.Set{qt}={V_DEF(:,:,qt),CV}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;

end
GIBBON www.gibboncode.org
Kevin Mattheus Moerman, [email protected]
GIBBON footer text
License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE
GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.
Copyright (C) 2006-2021 Kevin Mattheus Moerman and the GIBBON contributors
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.