DEMO_febio_0055_clot_tube_slide_pressure.m
Below is a demonstration for:
- Building geometry for a spherical blob with tetrahedral elements which is being aspirated into a tube. This demo consists off:
- Defining the boundary conditions
- Coding the febio structure
- Running the model
- Importing and visualizing the displacement results
Contents
- Keywords
- Plot settings
- Control parameters
- Creating model geometry and mesh
- Creating tube model
- Join model node sets
- Get contact surfaces
- Get pressure surface
- Defining the FEBio input structure
- Quick viewing of the FEBio input file structure
- Exporting the FEBio input file
- Running the FEBio analysis
- Import FEBio results
Keywords
- febio_spec version 3.0
- febio, FEBio
- blood clot
- contact, sliding, friction
- rigid body constraints
- hexahedral elements, hex8
- quadrilaterl elements, quad4
- shell elements
- sphere
- hyperelastic, Ogden
- displacement logfile
- stress logfile
clear; close all; clc;
Plot settings
fontSize=15; faceAlpha1=0.8; faceAlpha2=0.3; markerSize=40; lineWidth=3; cMap=[1 0.5 0.4; 0.9 0.3 0.27; 0.8 0.2 0.18; 0.7 0.1 0.09; 0.6 0 0; 0.5 0 0; 0.4 0 0;]; [cMap]=resampleColormap(cMap,250);
Control parameters
% Path names defaultFolder = fileparts(fileparts(mfilename('fullpath'))); savePath=fullfile(defaultFolder,'data','temp'); % Defining file names febioFebFileNamePart='tempModel'; febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name febioLogFileName=fullfile(savePath,[febioFebFileNamePart,'.txt']); %FEBio log file name febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement febioLogFileName_strainEnergy=[febioFebFileNamePart,'_energy_out.txt']; %Log file name for exporting strain energy density % Sphere parameters sphereRadius=3;% numElementsMantel=6; % Ground plate parameters tubeRadius=sphereRadius.*[1 0.1]; tubeAngle=3*(pi/180); tubeLength=abs(diff(tubeRadius))/tan(tubeAngle); % Material parameter set c1=1e-4; %Shear-modulus-like parameter MPa m1=2; %Material parameter setting degree of non-linearity k_factor=10; %Bulk modulus factor k=c1*k_factor; %Bulk modulus d=1e-9; %Density % FEA control settings max_refs=25; %Max reforms max_ups=0; %Set to zero to use full-Newton iterations opt_iter=15; %Optimum number of iterations max_retries=25; %Maximum number of retires symmetric_stiffness=0; min_residual=1e-20; timeTotal=1; %Analysis time numTimeSteps=100; %Number of time steps desired step_size=timeTotal/numTimeSteps; dtmin=(timeTotal/numTimeSteps)/100; %Minimum time step size dtmax=(timeTotal/numTimeSteps)*10; %Maximum time step size analysisType='DYNAMIC'; %Contact parameters contactPenalty=10; laugon=0; minaug=1; maxaug=10; fric_coeff=0.1; %Specifying load pressureValue=7.5e-5;
Creating model geometry and mesh
%Control settings cPar.sphereRadius=sphereRadius; cPar.coreRadius=cPar.sphereRadius/2; cPar.numElementsMantel=numElementsMantel; cPar.numElementsCore=round(numElementsMantel*1.5); cPar.outputStructType=2; cPar.makeHollow=0; cPar.cParSmooth.n=25; %Creating sphere [meshOutput]=hexMeshSphere(cPar); % Access model element and patch data Fb_blob=meshOutput.facesBoundary; Cb_blob=meshOutput.boundaryMarker; V_blob=meshOutput.nodes; E_blob=meshOutput.elements;
Visualize blob mesh
hFig=cFigure; subplot(1,2,1); hold on; gpatch(Fb_blob,V_blob,Cb_blob,'k',0.8); patchNormPlot(Fb_blob,V_blob); axisGeom(gca,fontSize); colormap(gjet); icolorbar; camlight headlight; hs=subplot(1,2,2); hold on; title('Cut view of solid mesh','FontSize',fontSize); optionStruct.hFig=[hFig hs]; gpatch(Fb_blob,V_blob,'kw','none',0.25); meshView(meshOutput,optionStruct); axisGeom(gca,fontSize); drawnow;

Creating tube model
pointSpacingBlob=mean(patchEdgeLengths(Fb_blob,V_blob)); pointSpacingTube=pointSpacingBlob; rEnd=sphereRadius+(sphereRadius.*((sphereRadius-tubeRadius(2))/tubeLength)); V_curve_tube=[sphereRadius rEnd 0; -tubeLength tubeRadius(2) 0;]; nResample=ceil(max(pathLength(V_curve_tube))./pointSpacingTube); V_curve_tube=evenlySampleCurve(V_curve_tube,nResample,'pchip',0); cPar.closeLoopOpt=1; cPar.numSteps=[]; %If empty the number of steps is derived from point spacing of input curve cPar.w=[1 0 0]; [F_tube,V_tube]=polyRevolve(V_curve_tube,cPar); [F_tube,V_tube]=mergeVertices(F_tube,V_tube); center_of_mass_tube=mean(V_tube,1);
Join model node sets
V=[V_blob; V_tube; ]; F_tube=F_tube+size(V_blob,1);
Visualizing model
cFigure; hold on; gtitle('Model components',fontSize); hl(1)=gpatch(Fb_blob,V,'rw','k',0.8); hl(2)=gpatch(F_tube,V,'kw','k',0.5); legend(hl,{'Blob','Tube'}); clear hl; axisGeom(gca,fontSize); camlight headlight; drawnow;

Get contact surfaces
F_contact_blob=Fb_blob;
Visualize contact surfaces
cFigure; hold on; title('Tube blob contact pair','fontsize',fontSize); hl(1)=gpatch(F_tube,V,'rw','k',0.8); patchNormPlot(F_tube,V); hl(2)=gpatch(F_contact_blob,V,'kw','k',0.5); patchNormPlot(F_contact_blob,V); legend(hl,{'Master','Slave'}); clear hl; axisGeom(gca,fontSize); camlight headlight; drawnow;

Get pressure surface
N=patchNormal(F_contact_blob,V); x=[1 0 0]; D=dot(N,x(ones(size(N,1),1),:),2); logicFace=D>-1e-6; %Logic for current face set F_pressure=F_contact_blob(logicFace,:); %The current face set
Visualizing boundary conditions. Markers plotted on the semi-transparent model denote the nodes in the various boundary condition lists.
cFigure; hold on; title('Pressure surface','fontsize',fontSize); gpatch(F_pressure,V,'kw','k',0.5); patchNormPlot(F_pressure,V); % legend(hl,{'Master','Slave'}); clear hl; axisGeom(gca,fontSize); camlight headlight; drawnow;

Defining the FEBio input structure
See also febioStructTemplate and febioStruct2xml and the FEBio user manual.
%Get a template with default settings [febio_spec]=febioStructTemplate; %febio_spec version febio_spec.ATTR.version='3.0'; %Module section febio_spec.Module.ATTR.type='solid'; %Control section febio_spec.Control.analysis=analysisType; febio_spec.Control.time_steps=numTimeSteps; febio_spec.Control.step_size=timeTotal/numTimeSteps; febio_spec.Control.solver.max_refs=max_refs; febio_spec.Control.solver.max_ups=max_ups; febio_spec.Control.solver.symmetric_stiffness=symmetric_stiffness; febio_spec.Control.time_stepper.dtmin=dtmin; febio_spec.Control.time_stepper.dtmax=dtmax; febio_spec.Control.time_stepper.max_retries=max_retries; febio_spec.Control.time_stepper.opt_iter=opt_iter; %Material section materialName1='Material1'; febio_spec.Material.material{1}.ATTR.name=materialName1; febio_spec.Material.material{1}.ATTR.type='Ogden unconstrained'; febio_spec.Material.material{1}.ATTR.id=1; febio_spec.Material.material{1}.c1=c1; febio_spec.Material.material{1}.m1=m1; febio_spec.Material.material{1}.c2=c1; febio_spec.Material.material{1}.m2=-m1; febio_spec.Material.material{1}.cp=k; febio_spec.Material.material{1}.density=d; materialName2='Material2'; febio_spec.Material.material{2}.ATTR.name=materialName2; febio_spec.Material.material{2}.ATTR.type='rigid body'; febio_spec.Material.material{2}.ATTR.id=2; febio_spec.Material.material{2}.density=1; febio_spec.Material.material{2}.center_of_mass=center_of_mass_tube; %Mesh section % -> Nodes febio_spec.Mesh.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates % -> Elements partName1='Part1'; febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part febio_spec.Mesh.Elements{1}.ATTR.type='hex8'; %Element type febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E_blob,1))'; %Element id's febio_spec.Mesh.Elements{1}.elem.VAL=E_blob; %The element matrix partName2='Part2'; febio_spec.Mesh.Elements{2}.ATTR.name=partName2; %Name of this part febio_spec.Mesh.Elements{2}.ATTR.type='quad4'; %Element type febio_spec.Mesh.Elements{2}.elem.ATTR.id=size(E_blob,1)+(1:1:size(F_tube,1))'; %Element id's febio_spec.Mesh.Elements{2}.elem.VAL=F_tube; %The element matrix % -> Surfaces surfaceName1='Surface1_contact'; febio_spec.Mesh.Surface{1}.ATTR.name=surfaceName1; febio_spec.Mesh.Surface{1}.quad4.ATTR.id=(1:1:size(F_tube,1))'; febio_spec.Mesh.Surface{1}.quad4.VAL=F_tube; surfaceName2='Surface2_contact'; febio_spec.Mesh.Surface{2}.ATTR.name=surfaceName2; febio_spec.Mesh.Surface{2}.quad4.ATTR.id=(1:1:size(F_contact_blob,1))'; febio_spec.Mesh.Surface{2}.quad4.VAL=F_contact_blob; surfaceName3='Surface3_pressure'; febio_spec.Mesh.Surface{3}.ATTR.name=surfaceName3; febio_spec.Mesh.Surface{3}.quad4.ATTR.id=(1:1:size(F_pressure,1))'; febio_spec.Mesh.Surface{3}.quad4.VAL=F_pressure; % -> Surface pairs contactPairName='Contact1'; febio_spec.Mesh.SurfacePair{1}.ATTR.name=contactPairName; febio_spec.Mesh.SurfacePair{1}.primary=surfaceName2; febio_spec.Mesh.SurfacePair{1}.secondary=surfaceName1; %MeshDomains section febio_spec.MeshDomains.SolidDomain.ATTR.name=partName1; febio_spec.MeshDomains.SolidDomain.ATTR.mat=materialName1; febio_spec.MeshDomains.ShellDomain.ATTR.name=partName2; febio_spec.MeshDomains.ShellDomain.ATTR.mat=materialName2; %Loads febio_spec.Loads.surface_load{1}.ATTR.type='pressure'; febio_spec.Loads.surface_load{1}.ATTR.surface=surfaceName3; febio_spec.Loads.surface_load{1}.pressure.ATTR.lc=1; febio_spec.Loads.surface_load{1}.pressure.VAL=pressureValue; febio_spec.Loads.surface_load{1}.symmetric_stiffness=1; %Rigid section % -> Prescribed rigid body boundary conditions febio_spec.Rigid.rigid_constraint{1}.ATTR.name='RigidFix_1'; febio_spec.Rigid.rigid_constraint{1}.ATTR.type='fix'; febio_spec.Rigid.rigid_constraint{1}.rb=2; febio_spec.Rigid.rigid_constraint{1}.dofs='Rx,Ry,Rz,Ru,Rv,Rw'; %Contact section febio_spec.Contact.contact{1}.ATTR.type='sliding-elastic'; febio_spec.Contact.contact{1}.ATTR.surface_pair=contactPairName; febio_spec.Contact.contact{1}.two_pass=0; febio_spec.Contact.contact{1}.laugon=laugon; febio_spec.Contact.contact{1}.tolerance=0.2; febio_spec.Contact.contact{1}.gaptol=0; febio_spec.Contact.contact{1}.minaug=minaug; febio_spec.Contact.contact{1}.maxaug=maxaug; febio_spec.Contact.contact{1}.search_tol=0.01; febio_spec.Contact.contact{1}.search_radius=0.01*sqrt(sum((max(V,[],1)-min(V,[],1)).^2,2)); febio_spec.Contact.contact{1}.symmetric_stiffness=0; febio_spec.Contact.contact{1}.auto_penalty=1; febio_spec.Contact.contact{1}.penalty=contactPenalty; febio_spec.Contact.contact{1}.fric_coeff=fric_coeff; %LoadData section % -> load_controller febio_spec.LoadData.load_controller{1}.ATTR.id=1; febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{1}.interpolate='LINEAR'; febio_spec.LoadData.load_controller{1}.points.point.VAL=[0 0; 1 1]; %Output section % -> log file febio_spec.Output.logfile.ATTR.file=febioLogFileName; febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp; febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz'; febio_spec.Output.logfile.node_data{1}.ATTR.delim=','; febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_strainEnergy; febio_spec.Output.logfile.element_data{1}.ATTR.data='sed'; febio_spec.Output.logfile.element_data{1}.ATTR.delim=','; febio_spec.Output.logfile.element_data{1}.VAL=1:size(E_blob,1);
Quick viewing of the FEBio input file structure
The febView function can be used to view the xml structure in a MATLAB figure window.
febView(febio_spec); %Viewing the febio file
Exporting the FEBio input file
Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.
febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
Running the FEBio analysis
To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.
febioAnalysis.run_filename=febioFebFileName; %The input file name febioAnalysis.run_logname=febioLogFileName; %The name for the log file febioAnalysis.disp_on=1; %Display information on the command window febioAnalysis.runMode='external';%'internal'; [runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --------> RUNNING/MONITORING FEBIO JOB <-------- 10-Sep-2021 10:59:28 FEBio path: /home/kevin/FEBioStudio/bin/febio3 # Attempt removal of existing log files 10-Sep-2021 10:59:28 * Removal succesful 10-Sep-2021 10:59:28 # Attempt removal of existing .xplt files 10-Sep-2021 10:59:29 * Removal succesful 10-Sep-2021 10:59:29 # Starting FEBio... 10-Sep-2021 10:59:29 Max. total analysis time is: Inf s * Waiting for log file creation 10-Sep-2021 10:59:29 Max. wait time: 30 s * Log file found. 10-Sep-2021 10:59:29 # Parsing log file... 10-Sep-2021 10:59:29 number of iterations : 4 10-Sep-2021 10:59:31 number of reformations : 4 10-Sep-2021 10:59:31 ------- converged at time : 0.01 10-Sep-2021 10:59:31 number of iterations : 5 10-Sep-2021 10:59:33 number of reformations : 5 10-Sep-2021 10:59:33 ------- converged at time : 0.038 10-Sep-2021 10:59:33 number of iterations : 6 10-Sep-2021 10:59:36 number of reformations : 6 10-Sep-2021 10:59:36 ------- converged at time : 0.0804 10-Sep-2021 10:59:36 number of iterations : 7 10-Sep-2021 10:59:39 number of reformations : 7 10-Sep-2021 10:59:39 ------- converged at time : 0.13432 10-Sep-2021 10:59:39 number of iterations : 7 10-Sep-2021 10:59:43 number of reformations : 7 10-Sep-2021 10:59:43 ------- converged at time : 0.197456 10-Sep-2021 10:59:43 number of iterations : 4 10-Sep-2021 10:59:44 number of reformations : 4 10-Sep-2021 10:59:44 ------- converged at time : 0.267965 10-Sep-2021 10:59:44 number of iterations : 7 10-Sep-2021 10:59:48 number of reformations : 7 10-Sep-2021 10:59:48 ------- converged at time : 0.344372 10-Sep-2021 10:59:48 number of iterations : 19 10-Sep-2021 10:59:56 number of reformations : 19 10-Sep-2021 10:59:56 ------- converged at time : 0.425497 10-Sep-2021 10:59:56 number of iterations : 10 10-Sep-2021 11:00:01 number of reformations : 10 10-Sep-2021 11:00:01 ------- converged at time : 0.497591 10-Sep-2021 11:00:01 number of iterations : 8 10-Sep-2021 11:00:04 number of reformations : 8 10-Sep-2021 11:00:04 ------- converged at time : 0.575265 10-Sep-2021 11:00:04 number of iterations : 11 10-Sep-2021 11:00:09 number of reformations : 11 10-Sep-2021 11:00:09 ------- converged at time : 0.657405 10-Sep-2021 11:00:09 number of iterations : 6 10-Sep-2021 11:00:12 number of reformations : 6 10-Sep-2021 11:00:12 ------- converged at time : 0.74254 10-Sep-2021 11:00:12 number of iterations : 12 10-Sep-2021 11:00:18 number of reformations : 12 10-Sep-2021 11:00:18 ------- converged at time : 0.830649 10-Sep-2021 11:00:18 number of iterations : 7 10-Sep-2021 11:00:21 number of reformations : 7 10-Sep-2021 11:00:21 ------- converged at time : 0.920161 10-Sep-2021 11:00:21 number of iterations : 13 10-Sep-2021 11:00:27 number of reformations : 13 10-Sep-2021 11:00:27 ------- converged at time : 1 10-Sep-2021 11:00:27 Elapsed time : 0:00:58 10-Sep-2021 11:00:27 N O R M A L T E R M I N A T I O N # Done 10-Sep-2021 11:00:27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Import FEBio results
if 1%runFlag==1 %i.e. a succesful run
% Importing nodal displacements from a log file [time_mat, N_disp_mat,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp)); %Nodal displacements time_mat=[0; time_mat(:)]; %Time N_disp_mat=N_disp_mat(:,2:end,:); sizImport=size(N_disp_mat); sizImport(3)=sizImport(3)+1; N_disp_mat_n=zeros(sizImport); N_disp_mat_n(:,:,2:end)=N_disp_mat; N_disp_mat=N_disp_mat_n; DN=N_disp_mat(:,:,end); DN_magnitude=sqrt(sum(DN.^2,2)); V_def=V+DN; V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]); X_DEF=V_DEF(:,1,:); Y_DEF=V_DEF(:,2,:); Z_DEF=V_DEF(:,3,:); % [CF]=vertexToFaceMeasure(Fb_all,DN_magnitude);
Importing element strain energies from a log file
[~,E_energy,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_strainEnergy)); %Element stresses %Remove nodal index column E_energy=E_energy(:,2:end,:); %Add initial state i.e. zero displacement sizImport=size(E_energy); sizImport(3)=sizImport(3)+1; E_energy_mat_n=zeros(sizImport); E_energy_mat_n(:,:,2:end)=E_energy; E_energy=E_energy_mat_n;
indBlob=unique(Fb_blob(:));
t=linspace(0,2*pi,250)';
V_def_blob=V(indBlob,:)+N_disp_mat(indBlob,:,end);
[~,indMin]=min(V_def_blob(:,1));
[~,indMax]=max(V_def_blob(:,1));
xEnd=V_def_blob(indMin,1);
xStart=V_def_blob(indMax,1);
rEnd=sphereRadius+(xEnd.*((sphereRadius-tubeRadius(2))/tubeLength));
rStart=sphereRadius+(xStart.*((sphereRadius-tubeRadius(2))/tubeLength));
xMid=mean([xStart xEnd]);%sum([rStart rEnd].*[xStart xEnd])./sum([rStart rEnd]);
rMid=sphereRadius+(xMid.*((sphereRadius-tubeRadius(2))/tubeLength));
V_plot_xEnd=[xEnd*ones(size(t)) rEnd*cos(t) rEnd*sin(t)];
V_plot_xMid=[xMid*ones(size(t)) rMid*cos(t) rMid*sin(t)];
V_plot_xStart=[xStart*ones(size(t)) rStart*cos(t) rStart*sin(t)];
Plotting the simulated results using anim8 to visualize and animate deformations
% Create basic view and store graphics handle to initiate animation hf=cFigure; hold on; ht=gtitle(['Radial stretch: ',num2str(rMid/sphereRadius)]); hp1=gpatch(Fb_blob,V_def,DN_magnitude,'none',1); %Add graphics object to animate hp2=plotV(V_plot_xEnd ,'r-','LineWidth',3); hp3=plotV(V_plot_xMid ,'r-','LineWidth',3); hp4=plotV(V_plot_xStart,'r-','LineWidth',3); gpatch(F_tube,V_def,'kw','none',0.25); %Add graphics object to animate axisGeom(gca,fontSize); colormap(cMap); colorbar; caxis([0 max(DN_magnitude(:))]); caxis manual; axis([min(X_DEF(:)) max(X_DEF(:)) min(Y_DEF(:)) max(Y_DEF(:)) min(Z_DEF(:)) max(Z_DEF(:))]); camlight headlight; lighting gouraud; view(0,0); % view(-30,30); zoom(1.5); axis off; drawnow; LMid=1; % Set up animation features animStruct.Time=time_mat; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments DN=N_disp_mat(:,:,qt); %Current displacement DN_magnitude=sqrt(sum(DN.^2,2)); V_def=V+DN; %Current nodal coordinates V_def_blob=V_def(indBlob,:); [~,indMin]=min(V_def_blob(:,1)); [~,indMax]=max(V_def_blob(:,1)); xEnd=V_def_blob(indMin,1); xStart=V_def_blob(indMax,1); rEnd=sphereRadius+(xEnd.*((sphereRadius-tubeRadius(2))/tubeLength)); rStart=sphereRadius+(xStart.*((sphereRadius-tubeRadius(2))/tubeLength)); xMid=mean([xStart xEnd]);%sum([rStart rEnd].*[xStart xEnd])./sum([rStart rEnd]); rMid=sphereRadius+(xMid.*((sphereRadius-tubeRadius(2))/tubeLength)); LMid=min(LMid,rMid/sphereRadius); V_plot_xEnd=[xEnd*ones(size(t)) rEnd*cos(t) rEnd*sin(t)]; V_plot_xMid=[xMid*ones(size(t)) rMid*cos(t) rMid*sin(t)]; V_plot_xStart=[xStart*ones(size(t)) rStart*cos(t) rStart*sin(t)]; %Set entries in animation structure animStruct.Handles{qt}=[hp1 hp1 hp2 hp2 hp2 hp3 hp3 hp3 hp4 hp4 hp4 ht]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData','XData','YData','ZData','XData','YData','ZData','XData','YData','ZData','String'}; %Properties of objects to animate animStruct.Set{qt}={V_def,DN_magnitude,... V_plot_xEnd(:,1),V_plot_xEnd(:,2),V_plot_xEnd(:,3),... V_plot_xMid(:,1),V_plot_xMid(:,2),V_plot_xMid(:,3),... V_plot_xStart(:,1),V_plot_xStart(:,2),V_plot_xStart(:,3),... ['Radial stretch: ',num2str(rMid/sphereRadius)]}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;

end
GIBBON www.gibboncode.org
Kevin Mattheus Moerman, [email protected]
GIBBON footer text
License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE
GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.
Copyright (C) 2006-2021 Kevin Mattheus Moerman and the GIBBON contributors
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.