DEMO_febio_0037_lattice_test_octet_truss_01

Below is a demonstration for:

Contents

Keywords

clear; close all; clc;

Plot settings

Plot settings

fontSize=15;
faceAlpha1=0.8;
faceAlpha2=1;
edgeColor=0.25*ones(1,3);
edgeWidth=1.5;
markerSize=25;
markerSize2=25;
cMap=gjet(4);

Control parameters

% Path names
defaultFolder = fileparts(fileparts(mfilename('fullpath')));
savePath=fullfile(defaultFolder,'data','temp');

% Defining file names
febioFebFileNamePart='tempModel';
febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name
febioLogFileName=fullfile(savePath,[febioFebFileNamePart,'.txt']); %FEBio log file name
febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement
febioLogFileName_force=[febioFebFileNamePart,'_force_out.txt']; %Log file name for exporting force
febioLogFileName_stress=[febioFebFileNamePart,'_stress_out.txt']; %Log file name for exporting stress
febioLogFileName_stiffness=[febioFebFileNamePart,'_stiffness_out.txt']; %Log file name for exporting stiffness

%Specifying dimensions and number of elements
sampleSize=10;
latticeType=1;
elementType='hex8'; %'hex8'

%Define applied displacement
appliedStrain=0.3; %Linear strain (Only used to compute applied stretch)
loadingOption='compression'; % or 'tension'
switch loadingOption
    case 'compression'
        stretchLoad=1-appliedStrain; %The applied stretch for uniaxial loading
    case 'tension'
        stretchLoad=1+appliedStrain; %The applied stretch for uniaxial loading
end
displacementMagnitude=(stretchLoad*sampleSize)-sampleSize; %The displacement magnitude

%Material parameter set
E_youngs1=0.1; %Material Young's modulus
nu1=0.4; %Material Poisson's ratio

% FEA control settings
numTimeSteps=20; %Number of time steps desired
max_refs=50; %Max reforms
max_ups=0; %Set to zero to use full-Newton iterations
opt_iter=15; %Optimum number of iterations
max_retries=5; %Maximum number of retires
dtmin=(1/numTimeSteps)/100; %Minimum time step size
dtmax=(1/numTimeSteps); %Maximum time step size
min_residual=1e-20;
symmetric_stiffness=0;
runMode='external'; %'internal' or 'external'
%Specifying dimensions and number of elements
r=0.5; %Radii, results in a width of 1
n=3;
nCopies=n*ones(1,3); %Number of offset copies
d=2*r; %Diameter
w=(n-1)*d; %sampleSize

Create lattice

switch latticeType
    case 1 %Octet truss
        [E,V,C,F,CF]=rhombicDodecahedronMesh(r,nCopies);
        V=V./(n-1);
        V=V*sampleSize;

        [indBoundary]=tesBoundary(F);
        cPar.shrinkFactor=0.15; %Strut sides are formed by shrinking the input mesh faces by this factor
        cPar.meshType='hex'; %desired output mesh type
        cPar.indBoundary=indBoundary; %indices of the boundary faces
        cPar.hexSplit=2;
        cPar.latticeSide=2; %1=side 1 the edge lattice, 2=side 2 the dual lattice to the edge lattice
        [Es,Vs,Cs]=element2lattice(E,V,cPar); %Get lattice structure

        logicKeep1=~(Vs(:,1)<=-1e-3);
        logicKeep2=~(Vs(:,2)<=-1e-3);
        logicKeep3=~(Vs(:,3)<=-1e-3);
        logicKeep4=~(Vs(:,1)>=sampleSize+1e-3);
        logicKeep5=~(Vs(:,2)>=sampleSize+1e-3);
        logicKeep6=~(Vs(:,3)>=sampleSize+1e-3);

        logicKeepEs=sum(logicKeep1(Es),2)>=4 &...
            sum(logicKeep2(Es),2)>=4 &...
            sum(logicKeep3(Es),2)>=4 &...
            sum(logicKeep4(Es),2)>=4 &...
            sum(logicKeep5(Es),2)>=4 &...
            sum(logicKeep6(Es),2)>=4;

        Es=Es(logicKeepEs,:);
        Cs=Cs(logicKeepEs,:);
        [Es,Vs,indFix]=patchCleanUnused(Es,Vs);

        % [Es,Vs,~,~]=subHex(Es,Vs,1,1);
        % Cs=repmat(Cs,8,1);

        % Create patch Data for visualization
        [Fs,CsF]=element2patch(Es,Cs); %Patch data for plotting

        %Get new boundary set
        indB=tesBoundary(Fs);
        Fb=Fs(indB,:);
    case 2 %Rhombic dodecahedron mesh ("dual" of octet truss lattice)
        [E,V,C,F,CF]=rhombicDodecahedronMesh(r,nCopies);
        V=V./(n-1);
        V=V*sampleSize;

        [indBoundary]=tesBoundary(F);
        cPar.shrinkFactor=0.15; %Strut sides are formed by shrinking the input mesh faces by this factor
        cPar.meshType='hex'; %desired output mesh type
        cPar.indBoundary=indBoundary; %indices of the boundary faces
        cPar.hexSplit=3;
        cPar.latticeSide=1; %1=side 1 the edge lattice, 2=side 2 the dual lattice to the edge lattice
        [Es,Vs,Cs]=element2lattice(E,V,cPar); %Get lattice structure

        logicKeep1=~(Vs(:,1)<=-1e-3);
        logicKeep2=~(Vs(:,2)<=-1e-3);
        logicKeep3=~(Vs(:,3)<=-1e-3);
        logicKeep4=~(Vs(:,1)>=sampleSize+1e-3);
        logicKeep5=~(Vs(:,2)>=sampleSize+1e-3);
        logicKeep6=~(Vs(:,3)>=sampleSize+1e-3);

        logicKeepEs=sum(logicKeep1(Es),2)>=4 &...
            sum(logicKeep2(Es),2)>=4 &...
            sum(logicKeep3(Es),2)>=4 &...
            sum(logicKeep4(Es),2)>=4 &...
            sum(logicKeep5(Es),2)>=4 &...
            sum(logicKeep6(Es),2)>=4;

        Es=Es(logicKeepEs,:);
        Cs=Cs(logicKeepEs,:);
        [Es,Vs,indFix]=patchCleanUnused(Es,Vs);

        % Create patch Data for visualization
        [Fs,CsF]=element2patch(Es,Cs); %Patch data for plotting

        %Get new boundary set
        indB=tesBoundary(Fs);
        Fb=Fs(indB,:);
end

if strcmp(elementType,'hex20')
    [Es,Vs,~,Fb]=hex8_hex20(Es,Vs,{},Fb);
end

Visualizing input mesh and lattic structures

cFigure;
hs=subplot(1,2,1);
title('The input mesh','fontSize',fontSize)
hold on;
gpatch(F,V,0.5*ones(1,3),'k',0.5);
axisGeom(gca,fontSize);
camlight headlight; lighting flat;

% Fst=[Fs(:,[1 2 3]); Fs(:,[3 4 1]);];
% indB=tesBoundary(Fst,Vs);
% Fbt=Fst(indB,:);

subplot(1,2,2);
title('Lattice side 1','fontSize',fontSize)
hold on;
gpatch(Fb,Vs,'bw','k',1);
% plotV(Vs(Fb(:),:),'r.');
% patchNormPlot(Fs,Vs);
axisGeom(gca,fontSize);
camlight headlight; lighting flat;

drawnow;

DEFINE BC's

% Define node set logics
indAll=(1:1:size(Vs,1))';
logicBoundary=ismember(indAll,Fb);

Z=Vs(:,3);
logicTop=Z>=(sampleSize-eps(sampleSize))& logicBoundary;
logicBottom=Z<=eps(sampleSize) & logicBoundary;

X=Vs(:,1);
logicSide1=X>=(sampleSize-eps(sampleSize))& logicBoundary;
logicSide2=X<=eps(sampleSize)& logicBoundary;

Y=Vs(:,2);
logicSide3=Y>=(sampleSize-eps(sampleSize))& logicBoundary;
logicSide4=Y<=eps(sampleSize)& logicBoundary;

bcPrescribeListCell{1}=find(logicSide1)';
bcPrescribeListCell{2}=find(logicSide2)';
bcPrescribeListCell{3}=find(logicSide3)';
bcPrescribeListCell{4}=find(logicSide4)';
bcPrescribeListCell{5}=find(logicTop)';
bcPrescribeListCell{6}=find(logicBottom)';

Smoothing lattice

% indKeep=unique([bcPrescribeListCell{:}]);
% [Fb_clean,Vb_clean,indFix]=patchCleanUnused(Fb,Vs);
%
% cPar.Method='HC';
% cPar.n=6;
%
% cPar.RigidConstraints=indFix(indKeep);
% % cPar.RigidConstraints=cPar.RigidConstraints(cPar.RigidConstraints>0);
%
% [Vb_clean]=tesSmooth(Fb_clean,Vb_clean,[],cPar);
% ind=Fb(:);
% ind=unique(ind(:));
% Vs(ind,:)=Vb_clean;

% cFigure; hold on;
% gpatch(Fb,Vs,'bw','k',1);
% % patchNormPlot(Fs,Vs);
% % plotV(Vs(indKeep,:),'k.','MarkerSize',25)
% axisGeom(gca,fontSize);
% camlight headlight; lighting flat;
% drawnow;
%Prescribed displacement nodes
bcPrescribeList=find(logicTop);
bcSupportList=find(logicBottom);

Visualizing input mesh and lattice structures

cFigure;
hs=subplot(1,2,1);
title('The input mesh','fontSize',fontSize)
hold on;
gpatch(F,V,0.5*ones(1,3),'k',0.5);
axisGeom(gca,fontSize);
camlight headlight; lighting flat;

subplot(1,2,2);
title('Lattice side 1','fontSize',fontSize)
hold on;
gpatch(Fb,Vs,'bw');
% patchNormPlot(Fs,Vs);
axisGeom(gca,fontSize);
camlight headlight; lighting flat;

drawnow;

Visualize BC's

hf=cFigure; hold on;
title('Boundary conditions model','FontSize',fontSize);
gpatch(Fb,Vs,'w','none',0.5);
hl2(1)=plotV(Vs(bcPrescribeList,:),'r.','MarkerSize',markerSize2);
hl2(2)=plotV(Vs(bcSupportList,:),'b.','MarkerSize',markerSize2);
legend(hl2,{'BC prescribe','BC support'});
axisGeom(gca,fontSize);
camlight headlight;
drawnow;

Defining the FEBio input structure

See also febioStructTemplate and febioStruct2xml and the FEBio user manual.

%Get a template with default settings
[febio_spec]=febioStructTemplate;

%febio_spec version
febio_spec.ATTR.version='3.0';

%Module section
febio_spec.Module.ATTR.type='solid';

%Control section
febio_spec.Control.analysis='STATIC';
febio_spec.Control.time_steps=numTimeSteps;
febio_spec.Control.step_size=1/numTimeSteps;
febio_spec.Control.solver.max_refs=max_refs;
febio_spec.Control.solver.max_ups=max_ups;
febio_spec.Control.time_stepper.dtmin=dtmin;
febio_spec.Control.time_stepper.dtmax=dtmax;
febio_spec.Control.time_stepper.max_retries=max_retries;
febio_spec.Control.time_stepper.opt_iter=opt_iter;

%Material section
materialName1='Material1';
febio_spec.Material.material{1}.ATTR.name=materialName1;
febio_spec.Material.material{1}.ATTR.type='neo-Hookean';
febio_spec.Material.material{1}.ATTR.id=1;
febio_spec.Material.material{1}.E=E_youngs1;
febio_spec.Material.material{1}.v=nu1;

%Mesh section
% -> Nodes
febio_spec.Mesh.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name
febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(Vs,1))'; %The node id's
febio_spec.Mesh.Nodes{1}.node.VAL=Vs; %The nodel coordinates

% -> Elements
partName1='Part1';
febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part
febio_spec.Mesh.Elements{1}.ATTR.type=elementType; %Element type
febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(Es,1))'; %Element id's
febio_spec.Mesh.Elements{1}.elem.VAL=Es; %The element matrix

% -> NodeSets
nodeSetName1='bcSupportList';
febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1;
febio_spec.Mesh.NodeSet{1}.node.ATTR.id=bcSupportList(:);

nodeSetName2='bcPrescribeList';
febio_spec.Mesh.NodeSet{2}.ATTR.name=nodeSetName2;
febio_spec.Mesh.NodeSet{2}.node.ATTR.id=bcPrescribeList(:);

%MeshDomains section
febio_spec.MeshDomains.SolidDomain.ATTR.name=partName1;
febio_spec.MeshDomains.SolidDomain.ATTR.mat=materialName1;

%Boundary condition section
% -> Fix boundary conditions
febio_spec.Boundary.bc{1}.ATTR.type='fix';
febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1;
febio_spec.Boundary.bc{1}.dofs='x,y,z';

febio_spec.Boundary.bc{2}.ATTR.type='fix';
febio_spec.Boundary.bc{2}.ATTR.node_set=nodeSetName2;
febio_spec.Boundary.bc{2}.dofs='x,y';

febio_spec.Boundary.bc{3}.ATTR.type='prescribe';
febio_spec.Boundary.bc{3}.ATTR.node_set=nodeSetName2;
febio_spec.Boundary.bc{3}.dof='z';
febio_spec.Boundary.bc{3}.scale.ATTR.lc=1;
febio_spec.Boundary.bc{3}.scale.VAL=displacementMagnitude;
febio_spec.Boundary.bc{3}.relative=0;

%LoadData section
% -> load_controller
febio_spec.LoadData.load_controller{1}.ATTR.id=1;
febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve';
febio_spec.LoadData.load_controller{1}.interpolate='LINEAR';
febio_spec.LoadData.load_controller{1}.points.point.VAL=[0 0; 1 1];

%Output section
% -> log file
febio_spec.Output.logfile.ATTR.file=febioLogFileName;
febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp;
febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz';
febio_spec.Output.logfile.node_data{1}.ATTR.delim=',';

febio_spec.Output.logfile.node_data{2}.ATTR.file=febioLogFileName_force;
febio_spec.Output.logfile.node_data{2}.ATTR.data='Rx;Ry;Rz';
febio_spec.Output.logfile.node_data{2}.ATTR.delim=',';

% febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_stress;
% febio_spec.Output.logfile.element_data{1}.ATTR.data='sz';
% febio_spec.Output.logfile.element_data{1}.ATTR.delim=',';
% febio_spec.Output.logfile.element_data{1}.VAL=1:size(Es,1);

Quick viewing of the FEBio input file structure

The febView function can be used to view the xml structure in a MATLAB figure window.

febView(febio_spec); %Viewing the febio file

Exporting the FEBio input file

Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.

febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode

Running the FEBio analysis

To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.

febioAnalysis.run_filename=febioFebFileName; %The input file name
febioAnalysis.run_logname=febioLogFileName; %The name for the log file
febioAnalysis.disp_on=1; %Display information on the command window
febioAnalysis.runMode=runMode; %Run in external or in matlab terminal

[runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-------->    RUNNING/MONITORING FEBIO JOB    <-------- 28-Jun-2022 09:02:41
FEBio path: /home/kevin/FEBioStudio/bin/febio3
# Attempt removal of existing log files                28-Jun-2022 09:02:41
 * Removal succesful                                   28-Jun-2022 09:02:41
# Attempt removal of existing .xplt files              28-Jun-2022 09:02:41
 * Removal succesful                                   28-Jun-2022 09:02:41
# Starting FEBio...                                    28-Jun-2022 09:02:41
  Max. total analysis time is: Inf s
 * Waiting for log file creation                       28-Jun-2022 09:02:41
   Max. wait time: 30 s
 * Log file found.                                     28-Jun-2022 09:02:41
# Parsing log file...                                  28-Jun-2022 09:02:41
    number of iterations   : 3                         28-Jun-2022 09:02:42
    number of reformations : 3                         28-Jun-2022 09:02:42
------- converged at time : 0.05                       28-Jun-2022 09:02:42
    number of iterations   : 3                         28-Jun-2022 09:02:42
    number of reformations : 3                         28-Jun-2022 09:02:42
------- converged at time : 0.1                        28-Jun-2022 09:02:42
    number of iterations   : 3                         28-Jun-2022 09:02:42
    number of reformations : 3                         28-Jun-2022 09:02:42
------- converged at time : 0.15                       28-Jun-2022 09:02:42
    number of iterations   : 4                         28-Jun-2022 09:02:43
    number of reformations : 4                         28-Jun-2022 09:02:43
------- converged at time : 0.2                        28-Jun-2022 09:02:43
    number of iterations   : 19                        28-Jun-2022 09:02:44
    number of reformations : 19                        28-Jun-2022 09:02:44
------- converged at time : 0.25                       28-Jun-2022 09:02:44
    number of iterations   : 6                         28-Jun-2022 09:02:45
    number of reformations : 6                         28-Jun-2022 09:02:45
------- converged at time : 0.294482                   28-Jun-2022 09:02:45
    number of iterations   : 4                         28-Jun-2022 09:02:45
    number of reformations : 4                         28-Jun-2022 09:02:45
------- converged at time : 0.340067                   28-Jun-2022 09:02:45
    number of iterations   : 5                         28-Jun-2022 09:02:45
    number of reformations : 5                         28-Jun-2022 09:02:45
------- converged at time : 0.386536                   28-Jun-2022 09:02:45
    number of iterations   : 4                         28-Jun-2022 09:02:46
    number of reformations : 4                         28-Jun-2022 09:02:46
------- converged at time : 0.433711                   28-Jun-2022 09:02:46
    number of iterations   : 4                         28-Jun-2022 09:02:46
    number of reformations : 4                         28-Jun-2022 09:02:46
------- converged at time : 0.48145                    28-Jun-2022 09:02:46
    number of iterations   : 4                         28-Jun-2022 09:02:46
    number of reformations : 4                         28-Jun-2022 09:02:46
------- converged at time : 0.529642                   28-Jun-2022 09:02:46
    number of iterations   : 4                         28-Jun-2022 09:02:47
    number of reformations : 4                         28-Jun-2022 09:02:47
------- converged at time : 0.578196                   28-Jun-2022 09:02:47
    number of iterations   : 4                         28-Jun-2022 09:02:47
    number of reformations : 4                         28-Jun-2022 09:02:47
------- converged at time : 0.627038                   28-Jun-2022 09:02:47
    number of iterations   : 4                         28-Jun-2022 09:02:48
    number of reformations : 4                         28-Jun-2022 09:02:48
------- converged at time : 0.676113                   28-Jun-2022 09:02:48
    number of iterations   : 4                         28-Jun-2022 09:02:48
    number of reformations : 4                         28-Jun-2022 09:02:48
------- converged at time : 0.725372                   28-Jun-2022 09:02:48
    number of iterations   : 4                         28-Jun-2022 09:02:48
    number of reformations : 4                         28-Jun-2022 09:02:48
------- converged at time : 0.77478                    28-Jun-2022 09:02:48
    number of iterations   : 4                         28-Jun-2022 09:02:49
    number of reformations : 4                         28-Jun-2022 09:02:49
------- converged at time : 0.824306                   28-Jun-2022 09:02:49
    number of iterations   : 4                         28-Jun-2022 09:02:49
    number of reformations : 4                         28-Jun-2022 09:02:49
------- converged at time : 0.873926                   28-Jun-2022 09:02:49
    number of iterations   : 5                         28-Jun-2022 09:02:49
    number of reformations : 5                         28-Jun-2022 09:02:49
------- converged at time : 0.923623                   28-Jun-2022 09:02:49
    number of iterations   : 6                         28-Jun-2022 09:02:50
    number of reformations : 6                         28-Jun-2022 09:02:50
------- converged at time : 0.97338                    28-Jun-2022 09:02:50
    number of iterations   : 4                         28-Jun-2022 09:02:50
    number of reformations : 4                         28-Jun-2022 09:02:50
------- converged at time : 1                          28-Jun-2022 09:02:50
 Elapsed time : 0:00:09                                28-Jun-2022 09:02:50
 N O R M A L   T E R M I N A T I O N
# Done                                                 28-Jun-2022 09:02:50
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Import FEBio results

if runFlag==1 %i.e. a succesful run
    % Importing nodal displacements from a log file
    [timeVec, N_disp_mat,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp)); %Nodal displacements
    timeVec=[0; timeVec(:)]; %Time

    N_disp_mat=N_disp_mat(:,2:end,:);
    sizImport=size(N_disp_mat);
    sizImport(3)=sizImport(3)+1;
    N_disp_mat_n=zeros(sizImport);
    N_disp_mat_n(:,:,2:end)=N_disp_mat;
    N_disp_mat=N_disp_mat_n;
    DN=N_disp_mat(:,:,end);
    DN_magnitude=sqrt(sum(DN(:,3).^2,2));
    Vs_def=Vs+DN;

    %     % Importing element stress from a log file
    %     [time_mat, E_stress_mat,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_stress)); %Nodal forces
    %     time_mat=[0; time_mat(:)]; %Time
    %     stress_cauchy_sim=[0; mean(squeeze(E_stress_mat(:,end,:)),1)'];

Importing nodal forces from a log file

    [dataStruct]=importFEBio_logfile(fullfile(savePath,febioLogFileName_force),1,1); %Nodal forces

    %Access data
    timeVec=dataStruct.time;
    f_sum_x=squeeze(sum(dataStruct.data(bcPrescribeList,1,:),1));
    f_sum_y=squeeze(sum(dataStruct.data(bcPrescribeList,2,:),1));
    f_sum_z=squeeze(sum(dataStruct.data(bcPrescribeList,3,:),1));

Visualize force data

    displacementApplied=timeVec.*displacementMagnitude;

    cFigure; hold on;
    xlabel('$u$ [mm]','Interpreter','Latex');
    ylabel('$F_z$ [N]','Interpreter','Latex');
    hp=plot(displacementApplied(:),f_sum_z(:),'b-','LineWidth',3);
    grid on; box on; axis square; axis tight;
    set(gca,'FontSize',fontSize);
    drawnow;

Plotting the simulated results using anim8 to visualize and animate deformations

    % Create basic view and store graphics handle to initiate animation
    hf=cFigure; %Open figure
    gtitle([febioFebFileNamePart,': Press play to animate']);
    hp=gpatch(Fb,Vs_def,DN_magnitude,'k',1); %Add graphics object to animate
    %     gpatch(Fb,Vs,'kw','none',0.25); %A static graphics object
    hp.FaceColor='interp';

    axisGeom(gca,fontSize);
    colormap(gjet(250)); colorbar;
    clim([0 max(DN_magnitude)]);
    axis([min([Vs_def(:,1);Vs(:,1)]) max([Vs_def(:,1);Vs(:,1)])...
        min([Vs_def(:,2);Vs(:,2)]) max([Vs_def(:,2);Vs(:,2)])...
        min([Vs_def(:,3);Vs(:,3)]) max([Vs_def(:,3);Vs(:,3)]) ]); %Set axis limits statically
    %     view(130,25); %Set view direction
    camlight headlight;

    % Set up animation features
    animStruct.Time=timeVec; %The time vector
    for qt=1:1:size(N_disp_mat,3) %Loop over time increments
        DN=N_disp_mat(:,:,qt); %Current displacement
        DN_magnitude=sqrt(sum(DN.^2,2)); %Current displacement magnitude
        Vs_def=Vs+DN; %Current nodal coordinates

        %Set entries in animation structure
        animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate
        animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate
        animStruct.Set{qt}={Vs_def,DN_magnitude}; %Property values for to set in order to animate
    end
    anim8(hf,animStruct); %Initiate animation feature
    drawnow;
end

GIBBON www.gibboncode.org

Kevin Mattheus Moerman, [email protected]

GIBBON footer text

License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE

GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.

Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.