DEMO_febio_0019_vessel_pressure_inflate

Below is a demonstration for:

Contents

Keywords

clear; close all; clc;

Plot settings

fontSize=20;
faceAlpha1=0.8;
markerSize=40;
markerSize2=20;
lineWidth=3;

Control parameters

% Path names
defaultFolder = fileparts(fileparts(mfilename('fullpath')));
savePath=fullfile(defaultFolder,'data','temp');

% Defining file names
febioFebFileNamePart='tempModel';
febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name
febioLogFileName=[febioFebFileNamePart,'.txt']; %FEBio log file name
febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement
febioLogFileName_stress_prin=[febioFebFileNamePart,'_stress_prin_out.txt']; %Log file name for exporting principal stress

%Specifying geometry parameters
pointSpacing=1;

radiusInner1=9;
radiusInner2=10;

radiusOuter1=10;
radiusOuter2=12;

vesselLength=50;

%Load
appliedPressure=0.1; %MPa

%Material parameter set
c1=1; %Shear-modulus-like parameter
m1=2; %Material parameter setting degree of non-linearity
k_factor=1e2; %Bulk modulus factor
k=c1*k_factor; %Bulk modulus

% FEA control settings
numTimeSteps=10; %Number of time steps desired
max_refs=25; %Max reforms
max_ups=0; %Set to zero to use full-Newton iterations
opt_iter=6; %Optimum number of iterations
max_retries=5; %Maximum number of retires
dtmin=(1/numTimeSteps)/100; %Minimum time step size
dtmax=1/numTimeSteps; %Maximum time step size

runMode='external';% 'internal' or 'external'

Creating model boundary polygons

nRad=round((2*pi*mean([radiusInner1 radiusInner2]))/pointSpacing); %Number of radial steps

t=linspace(0,2*pi,nRad)'; %Angles
t=t(1:end-1); %take away last which equals start
v1_Inner=[-(vesselLength/2)*ones(size(t)) radiusInner1*sin(t) radiusInner1*cos(t)]; %Circular coordinates

t=linspace(0,2*pi,nRad)'; %Angles
t=t(1:end-1); %take away last which equals start
v2_Inner=[(vesselLength/2)*ones(size(t)) radiusInner2*sin(t) radiusInner2*cos(t)]; %Circular coordinates

Creating model boundary surfaces

% controlStructLoft.numSteps=17;
controlStructLoft.closeLoopOpt=1;
controlStructLoft.patchType='quad';

%Meshing outer surface
[F1,V1]=polyLoftLinear(v1_Inner,v2_Inner,controlStructLoft);
F1=fliplr(F1); %Invert orientation
outerRadii=V1(:,1); %x
outerRadii=outerRadii-min(outerRadii(:)); %[0 - ...]
outerRadii=outerRadii./max(outerRadii(:)); %[0 - 1]
outerRadii=radiusOuter1+(outerRadii.*(radiusOuter2-radiusOuter1)); %[0 - 1]

innerRadii=V1(:,1); %x
innerRadii=innerRadii-min(innerRadii(:)); %[0 - ...]
innerRadii=innerRadii./max(innerRadii(:)); %[0 - 1]
innerRadii=radiusInner1+(innerRadii.*(radiusInner2-radiusInner1)); %[0 - 1]

wallThickness=outerRadii-innerRadii;

Plotting model boundary polygons

cFigure; hold on;
title('Inner surface and polygons','FontSize',fontSize);
gpatch(F1,V1,outerRadii);
plotV(v1_Inner,'g.-','LineWidth',3);
plotV(v2_Inner,'g.-','LineWidth',3);
axisGeom(gca,fontSize); camlight headlight;
colormap gjet; colorbar;
gdrawnow;
numSteps=ceil(max(wallThickness)./pointSpacing);
[E,V,Fp1,Fp2]=patchThick(F1,V1,1,wallThickness,numSteps);

[F,~,C_type]=element2patch(E,[],'hex8');
indBoundary=tesBoundary(F);
Fb=F(indBoundary,:);
Cb=C_type(indBoundary,:);

Plotting model boundary surfaces

cFigure;
hold on;
title('Model boundary surfaces','FontSize',fontSize);

gpatch(Fb,V,Cb);

axisGeom(gca,fontSize); camlight headlight;
colormap gjet; icolorbar;
drawnow;

Defining the boundary conditions

The visualization of the model boundary shows colors for each side of the cube. These labels can be used to define boundary conditions.

%Define supported node set
bcSupportList=unique(Fb(ismember(Cb,[3 4]),:)); %Node set part of selected face

F_pressure=Fb(Cb==1,:);

Visualizing boundary conditions. Markers plotted on the semi-transparent model denote the nodes in the various boundary condition lists.

hf=cFigure;
title('Boundary conditions','FontSize',fontSize);
xlabel('X','FontSize',fontSize); ylabel('Y','FontSize',fontSize); zlabel('Z','FontSize',fontSize);
hold on;

gpatch(Fb,V,'kw','none',0.5);

hl(1)=plotV(V(bcSupportList,:),'k.','MarkerSize',markerSize);
hl(2)=gpatch(F_pressure,V,'rw','r',1);
patchNormPlot(F_pressure,V);

legend(hl,{'BC support','Pressure surface'});

axisGeom(gca,fontSize);
camlight headlight;
drawnow;

Defining the FEBio input structure

See also febioStructTemplate and febioStruct2xml and the FEBio user manual.

%Get a template with default settings
[febio_spec]=febioStructTemplate;

%febio_spec version
febio_spec.ATTR.version='4.0';

%Module section
febio_spec.Module.ATTR.type='solid';

%Control section
febio_spec.Control.analysis='STATIC';
febio_spec.Control.time_steps=numTimeSteps;
febio_spec.Control.step_size=1/numTimeSteps;
febio_spec.Control.solver.max_refs=max_refs;
febio_spec.Control.solver.qn_method.max_ups=max_ups;
febio_spec.Control.time_stepper.dtmin=dtmin;
febio_spec.Control.time_stepper.dtmax=dtmax;
febio_spec.Control.time_stepper.max_retries=max_retries;
febio_spec.Control.time_stepper.opt_iter=opt_iter;

%Material section
materialName1='Material1';
febio_spec.Material.material{1}.ATTR.name=materialName1;
febio_spec.Material.material{1}.ATTR.type='Ogden';
febio_spec.Material.material{1}.ATTR.id=1;
febio_spec.Material.material{1}.c1=c1;
febio_spec.Material.material{1}.m1=m1;
febio_spec.Material.material{1}.c2=c1;
febio_spec.Material.material{1}.m2=-m1;
febio_spec.Material.material{1}.k=k;

%Mesh section
% -> Nodes
febio_spec.Mesh.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name
febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's
febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates

% -> Elements
partName1='Part1';
febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part
febio_spec.Mesh.Elements{1}.ATTR.type='hex8'; %Element type
febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E,1))'; %Element id's
febio_spec.Mesh.Elements{1}.elem.VAL=E; %The element matrix

% -> Surfaces
surfaceName1='LoadedSurface';
febio_spec.Mesh.Surface{1}.ATTR.name=surfaceName1;
febio_spec.Mesh.Surface{1}.quad4.ATTR.id=(1:1:size(F_pressure,1))';
febio_spec.Mesh.Surface{1}.quad4.VAL=F_pressure;

% -> NodeSets
nodeSetName1='bcSupportList';
febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1;
febio_spec.Mesh.NodeSet{1}.VAL=mrow(bcSupportList);

%MeshDomains section
febio_spec.MeshDomains.SolidDomain.ATTR.name=partName1;
febio_spec.MeshDomains.SolidDomain.ATTR.mat=materialName1;

%Boundary condition section
% -> Fix boundary conditions
febio_spec.Boundary.bc{1}.ATTR.name='zero_displacement_xyz';
febio_spec.Boundary.bc{1}.ATTR.type='zero displacement';
febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1;
febio_spec.Boundary.bc{1}.x_dof=1;
febio_spec.Boundary.bc{1}.y_dof=1;
febio_spec.Boundary.bc{1}.z_dof=1;

%Loads section
% -> Surface load
febio_spec.Loads.surface_load{1}.ATTR.type='pressure';
febio_spec.Loads.surface_load{1}.ATTR.surface=surfaceName1;
febio_spec.Loads.surface_load{1}.pressure.ATTR.lc=1;
febio_spec.Loads.surface_load{1}.pressure.VAL=appliedPressure;
febio_spec.Loads.surface_load{1}.symmetric_stiffness=1;

%LoadData section
% -> load_controller
febio_spec.LoadData.load_controller{1}.ATTR.name='LC_1';
febio_spec.LoadData.load_controller{1}.ATTR.id=1;
febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve';
febio_spec.LoadData.load_controller{1}.interpolate='LINEAR';
%febio_spec.LoadData.load_controller{1}.extend='CONSTANT';
febio_spec.LoadData.load_controller{1}.points.pt.VAL=[0 0; 1 1];

%Output section
% -> log file
febio_spec.Output.logfile.ATTR.file=febioLogFileName;
febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp;
febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz';
febio_spec.Output.logfile.node_data{1}.ATTR.delim=',';

febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_stress_prin;
febio_spec.Output.logfile.element_data{1}.ATTR.data='s1;s2;s3';
febio_spec.Output.logfile.element_data{1}.ATTR.delim=',';

febio_spec.Output.plotfile.compression=0;

Quick viewing of the FEBio input file structure

The febView function can be used to view the xml structure in a MATLAB figure window.

febView(febio_spec); %Viewing the febio file

Exporting the FEBio input file

Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.

febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
%system(['gedit ',febioFebFileName,' &']);

Running the FEBio analysis

To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.

febioAnalysis.run_filename=febioFebFileName; %The input file name
febioAnalysis.run_logname=febioLogFileName; %The name for the log file
febioAnalysis.disp_on=1; %Display information on the command window
febioAnalysis.runMode=runMode;
febioAnalysis.maxLogCheckTime=10; %Max log file checking time

[runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-------->    RUNNING/MONITORING FEBIO JOB    <-------- 24-Jul-2023 10:40:34
FEBio path: /home/kevin/FEBioStudio/bin/febio4
# Attempt removal of existing log files                24-Jul-2023 10:40:34
 * Removal succesful                                   24-Jul-2023 10:40:34
# Attempt removal of existing .xplt files              24-Jul-2023 10:40:34
 * Removal succesful                                   24-Jul-2023 10:40:34
# Starting FEBio...                                    24-Jul-2023 10:40:34
  Max. total analysis time is: Inf s
 * Waiting for log file creation                       24-Jul-2023 10:40:34
   Max. wait time: 10 s
 * Log file found.                                     24-Jul-2023 10:40:34
# Parsing log file...                                  24-Jul-2023 10:40:34
    number of iterations   : 4                         24-Jul-2023 10:40:35
    number of reformations : 4                         24-Jul-2023 10:40:35
------- converged at time : 0.1                        24-Jul-2023 10:40:35
    number of iterations   : 4                         24-Jul-2023 10:40:36
    number of reformations : 4                         24-Jul-2023 10:40:36
------- converged at time : 0.2                        24-Jul-2023 10:40:36
    number of iterations   : 4                         24-Jul-2023 10:40:36
    number of reformations : 4                         24-Jul-2023 10:40:36
------- converged at time : 0.3                        24-Jul-2023 10:40:36
    number of iterations   : 4                         24-Jul-2023 10:40:38
    number of reformations : 4                         24-Jul-2023 10:40:38
------- converged at time : 0.4                        24-Jul-2023 10:40:38
    number of iterations   : 4                         24-Jul-2023 10:40:39
    number of reformations : 4                         24-Jul-2023 10:40:39
------- converged at time : 0.5                        24-Jul-2023 10:40:39
    number of iterations   : 4                         24-Jul-2023 10:40:39
    number of reformations : 4                         24-Jul-2023 10:40:39
------- converged at time : 0.6                        24-Jul-2023 10:40:39
    number of iterations   : 4                         24-Jul-2023 10:40:40
    number of reformations : 4                         24-Jul-2023 10:40:40
------- converged at time : 0.7                        24-Jul-2023 10:40:40
    number of iterations   : 4                         24-Jul-2023 10:40:40
    number of reformations : 4                         24-Jul-2023 10:40:40
------- converged at time : 0.8                        24-Jul-2023 10:40:40
    number of iterations   : 4                         24-Jul-2023 10:40:41
    number of reformations : 4                         24-Jul-2023 10:40:41
------- converged at time : 0.9                        24-Jul-2023 10:40:41
    number of iterations   : 4                         24-Jul-2023 10:40:41
    number of reformations : 4                         24-Jul-2023 10:40:41
------- converged at time : 1                          24-Jul-2023 10:40:41
 Elapsed time : 0:00:07                                24-Jul-2023 10:40:41
 N O R M A L   T E R M I N A T I O N
# Done                                                 24-Jul-2023 10:40:41
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Import FEBio results

if runFlag==1 %i.e. a succesful run

Importing nodal displacements from a log file

    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),0,1);

    %Access data
    N_disp_mat=dataStruct.data; %Displacement
    timeVec=dataStruct.time; %Time

    %Create deformed coordinate set
    V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);

Importing element principal stresses from a log file

    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_stress_prin),0,1);

    %Access data
    E_stress_prin_mat=dataStruct.data;
    S1_mat=E_stress_prin_mat(:,1,:);
    S2_mat=E_stress_prin_mat(:,2,:);
    S3_mat=E_stress_prin_mat(:,3,:);
    S_vm = sqrt(((S1_mat-S2_mat).^2+(S2_mat-S3_mat).^2+(S3_mat-S1_mat).^2)./2);

Plotting the simulated results using anim8 to visualize and animate deformations

    [~,CF_S_vm,~]=element2patch(E,S_vm(:,:,end),'hex8');
    Cb_S_vm=CF_S_vm(indBoundary,:);

    % Create basic view and store graphics handle to initiate animation
    hf=cFigure; %Open figure
    gtitle([febioFebFileNamePart,': Press play to animate']);
    title('Von Mises stres [MPa]','Interpreter','Latex')
    hp=gpatch(Fb,V_DEF(:,:,end),Cb_S_vm,'k',1); %Add graphics object to animate

    axisGeom(gca,fontSize);
    colormap(gjet(250)); colorbar;
    caxis([0 max(S_vm(:))]);
    axis(axisLim(V_DEF)); %Set axis limits statically
    camlight headlight;

    % Set up animation features
    animStruct.Time=timeVec; %The time vector
    for qt=1:1:size(N_disp_mat,3) %Loop over time increments
        [~,CF_S_vm,~]=element2patch(E,S_vm(:,:,qt),'hex8');
        Cb_S_vm=CF_S_vm(indBoundary,:);

        %Set entries in animation structure
        animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate
        animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate
        animStruct.Set{qt}={V_DEF(:,:,qt),Cb_S_vm}; %Property values for to set in order to animate
    end
    anim8(hf,animStruct); %Initiate animation feature
    drawnow;
end

GIBBON www.gibboncode.org

Kevin Mattheus Moerman, [email protected]

GIBBON footer text

License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE

GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.

Copyright (C) 2006-2023 Kevin Mattheus Moerman and the GIBBON contributors

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.